Automating Model Comparison in Factor Graphs

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

50 Downloads (Pure)

Samenvatting

Bayesian state and parameter estimation are automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.

Originele taal-2Engels
Artikelnummer1138
Aantal pagina's23
TijdschriftEntropy
Volume25
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - aug. 2023

Bibliografische nota

Funding Information:
Funding: This work was partly financed by GN Advanced Science, which is the research department of GN Hearing A/S.

Vingerafdruk

Duik in de onderzoeksthema's van 'Automating Model Comparison in Factor Graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit