Automatic Quality Assessment of Transperineal Ultrasound Images of the Male Pelvic Region, Using Deep Learning

S.M. Camps, T. Houben, G. Carneiro, C. Edwards, M. Antico, M. Dunnhofer, E.G.H.J. Martens, J.A. Baeza, B.G.L. Vanneste, E.J. van Limbergen, P.H.N. de With, F. Verhaegen, D. Fontanarosa (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)

Samenvatting

Ultrasound guidance is not in widespread use in prostate cancer radiotherapy workflows. This can be partially attributed to the need for image interpretation by a trained operator during ultrasound image acquisition. In this work, a one-class regressor, based on DenseNet and Gaussian processes, was implemented to automatically assess the quality of transperineal ultrasound images of the male pelvic region. The implemented deep learning approach was tested on 300 transperineal ultrasound images and it achieved a scoring accuracy of 94%, a specificity of 95% and a sensitivity of 92% with respect to the majority vote of 3 experts, which was comparable with the results of these experts. This is the first step toward a fully automatic workflow, which could potentially remove the need for ultrasound image interpretation and make real-time volumetric organ tracking in the radiotherapy environment using ultrasound more appealing.

Originele taal-2Engels
Pagina's (van-tot)445-454
Aantal pagina's10
TijdschriftUltrasound in Medicine and Biology
Volume46
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - feb. 2020

Bibliografische nota

Publisher Copyright:
© 2019 World Federation for Ultrasound in Medicine & Biology

Vingerafdruk

Duik in de onderzoeksthema's van 'Automatic Quality Assessment of Transperineal Ultrasound Images of the Male Pelvic Region, Using Deep Learning'. Samen vormen ze een unieke vingerafdruk.

Citeer dit