Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions

Lars van de Kamp (Corresponding author), Joey Reinders, Bram Hunnekens, Tom Oomen, Nathan van de Wouw

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
78 Downloads (Pure)

Samenvatting

Patient-ventilator asynchrony is one of the largest challenges in mechanical ventilation and is associated with prolonged ICU stay and increased mortality. The aim of this paper is to automatically detect and classify the different types of patient-ventilator asynchronies during a patient's breath using the typically available data on commercially available ventilators. This is achieved by a detection and classification framework using an objective definition of asynchrony and a supervised learning approach. The achieved detection performance of the near-real time framework on a clinical dataset is a significant improvement over current clinical practice, therewith and, this framework has the potential to significantly improve the patient comfort and treatment outcomes.

Originele taal-2Engels
Artikelnummer100236
Aantal pagina's10
TijdschriftIFAC Journal of Systems and Control
Volume27
DOI's
StatusGepubliceerd - mrt. 2024

Financiering

The authors wish to thank Francesco Mojoli and Tom Bakkes for giving access to the dataset of 15 patients from the Fondazione I.R.C.C.S. Policlinco San Matteo (reference number 41223).

Vingerafdruk

Duik in de onderzoeksthema's van 'Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit