Samenvatting
Frequent pain and discomfort in premature infants can lead to long-term adverse neurodevelopmental outcomes. Video-based monitoring is considered to be a promising contactless method for identification of discomfort moments. In this study, we propose a video-based method for automated detection of infant discomfort. The method is based on analyzing facial and body motion. Therefore, motion trajectories are estimated from frame to frame using optical flow. For each video segment, we further calculate the motion acceleration rate and extract 18 time- and frequency-domain features characterizing motion patterns. A support vector machine (SVM) classifier is then applied to video sequences to recognize infant status of comfort or discomfort. The method is evaluated using 183 video segments for 11 infants from 17 heel prick events. Experimental results show an AUC of 0.94 for discomfort detection and the average accuracy of 0.86 when combining all proposed features, which is promising for clinical use.
Originele taal-2 | Engels |
---|---|
Titel | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 5995-5999 |
Aantal pagina's | 5 |
ISBN van elektronische versie | 978-1-5386-1311-5 |
DOI's | |
Status | Gepubliceerd - jul. 2019 |
Evenement | 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - City Cube Berlin, Berlin, Duitsland Duur: 23 jul. 2019 → 27 jul. 2019 https://embc.embs.org/2019/ |
Congres
Congres | 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 |
---|---|
Verkorte titel | EMBC 2019 |
Land/Regio | Duitsland |
Stad | Berlin |
Periode | 23/07/19 → 27/07/19 |
Internet adres |
Trefwoorden
- Feature extraction
- Pediatrics
- Pain
- Acceleration
- Motion segmentation
- Monitoring
- Correlation
Vingerafdruk
Duik in de onderzoeksthema's van 'Automatic and continuous discomfort detection for premature infants in a NICU using video-based motion analysis'. Samen vormen ze een unieke vingerafdruk.Impact
-
Perinatal Medicine
M.B. (Beatrijs) van der Hout-van der Jagt (Content manager) & Eugenie Delvaux (Content manager)
Impact: Research Topic/Theme (at group level)