Automated sampling-based stability verification and DOA estimation for nonlinear systems

R.V. Bobiti, M. Lazar

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

This paper develops a new sampling-based method for stability verification of piecewise continuous nonlinear systems via Lyapunov functions. Depending on the nonlinear system dynamics, the candidate Lyapunov function and the set of states of interest, verifying stability requires solving complex, possibly non-convex or infeasible optimization problems. To avoid such problems, the proposed approach firstly distributes the verification of Lyapunov's inequality on a finite sampling of a bounded set of states of interest. Secondly, it extends the validity of Lyapunov's inequality to an infinite, bounded set of states by automatically exploiting local continuity properties. A sampling-based method for estimating the domain of attraction (DOA) via level sets of a validated Lyapunov function is also presented. Efficient state-space exploration is achieved using multi-resolution sampling and hyper-rectangles as basic sampling blocks. The operations that need to be performed for each sampling point in the state-space can be carried out in parallel, which improves scalability. The proposed methodology is illustrated for various benchmark examples from the literature.

Originele taal-2Engels
Artikelnummer8267231
Pagina's (van-tot)3659-3674
Aantal pagina's16
TijdschriftIEEE Transactions on Automatic Control
Volume63
Nummer van het tijdschrift11
DOI's
StatusGepubliceerd - 1 nov 2018

Vingerafdruk Duik in de onderzoeksthema's van 'Automated sampling-based stability verification and DOA estimation for nonlinear systems'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit