Automated catheter localization in volumetric ultrasound using 3D patch-wise U-net with focal loss

Hongxu Yang, Caifeng Shan, Alexander F. Kolen, Peter de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)

Samenvatting

3D ultrasound (US) imaging has become an attractive option for image-guided interventions. Fast and accurate catheter localization in 3D cardiac US can improve the outcome and efficiency of the cardiac interventions. In this paper, we propose a catheter localization method for 3D cardiac US using the patch-wise semantic segmentation with model fitting. Our 3D U-Net is trained with the focal loss of cross-entropy, which makes the network to focus more on samples that are difficult to classify. Moreover, we adopt a dense sampling strategy to overcome the extremely imbalanced catheter occupation in the 3D US data. Extensive experiments on our challenging ex-vivo dataset show that the proposed method achieves an F-1 score of 65.1% for catheter segmentation, outperforming the state-of-the-art methods. With this, our method can localize RF-ablation catheters with an average error of 1.28 mm.
Originele taal-2Engels
Titel2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1346-1350
Aantal pagina's5
ISBN van elektronische versie978-1-5386-6249-6
DOI's
StatusGepubliceerd - sep. 2019
Evenement26th IEEE International Conference on Image Processing (ICIP 2019) - Taipei, Taiwan, Taipei, Taiwan
Duur: 22 sep. 201925 sep. 2019

Congres

Congres26th IEEE International Conference on Image Processing (ICIP 2019)
Verkorte titelICIP 2019
Land/RegioTaiwan
StadTaipei
Periode22/09/1925/09/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Automated catheter localization in volumetric ultrasound using 3D patch-wise U-net with focal loss'. Samen vormen ze een unieke vingerafdruk.

Citeer dit