Autoencoder-Based Detection of Delays, Handovers and Workloads over High-Level Events

Irne Verwijst, Robin Mennens, Roeland Scheepens, Marwan Hassani (Corresponderende auteur)

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Detecting delays, anomalous work handovers, and high workloads is a challenging process mining task that is typically performed at the case level. However, process mining users would benefit from analyzing such behaviors at the process level where instances of such behavior are called high-level events. We propose a novel framework for high-level event mining that leverages anomaly detection and clustering methods to identify and analyze high-level events in an unsupervised setting. Our framework, called High-level Event Mining Machine Learning Approach (HEMMLA), utilizes an autoencoder-based anomaly detection method and requires no predefined time window or anomaly thresholds. An extensive experimental evaluation over real and synthetic datasets highlights the high scalability of our approach. An additional user study over real datasets underlines the ability of our framework to detect more interesting and explainable anomalies than the state-of-the-art.
Originele taal-2Engels
TitelCooperative Information Systems
Subtitel30th International Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings
RedacteurenMarco Comuzzi, Daniela Grigori, Mohamed Sellami, Zhangbing Zhou
Plaats van productieCham
UitgeverijSpringer
Pagina's111-128
Aantal pagina's18
ISBN van elektronische versie978-3-031-81375-7
ISBN van geprinte versie978-3-031-81374-0
DOI's
StatusGepubliceerd - 14 feb. 2025
Evenement30th International Conference on Cooperative Information Systems - Vila Gale Hotel, Porto, Portugal
Duur: 19 nov. 202421 nov. 2024
Congresnummer: 30
https://coopis.scitevents.org/

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume15506
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres30th International Conference on Cooperative Information Systems
Verkorte titelCoopIS 2024
Land/RegioPortugal
StadPorto
Periode19/11/2421/11/24
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Autoencoder-Based Detection of Delays, Handovers and Workloads over High-Level Events'. Samen vormen ze een unieke vingerafdruk.

Citeer dit