Augmenting Machine Learning with Information Retrieval to Recommend Real Cloned Code Methods for Code Completion

Muhammad Hammad, Önder Babur, Hamid Abdul Basit

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

6 Downloads (Pure)

Samenvatting

Software developers frequently reuse source code from repositories as it saves development time and effort. Code clones accumulated in these repositories hence represent often repeated functionalities and are candidates for reuse in an exploratory or rapid development. In previous work, we introduced DeepClone, a deep neural network model trained by fine tuning GPT-2 model over the BigCloneBench dataset to predict code clone methods. The probabilistic nature of DeepClone output generation can lead to syntax and logic errors that requires manual editing of the output for final reuse. In this paper, we propose a novel approach of applying an information retrieval (IR) technique on top of DeepClone output to recommend real clone methods closely matching the predicted output. We have quantitatively evaluated our strategy, showing that the proposed approach significantly improves the quality of recommendation.
Originele taal-2Engels
TijdschriftarXiv
StatusGepubliceerd - 2 okt 2020

Vingerafdruk Duik in de onderzoeksthema's van 'Augmenting Machine Learning with Information Retrieval to Recommend Real Cloned Code Methods for Code Completion'. Samen vormen ze een unieke vingerafdruk.

Citeer dit