Attentive Decision-Making and Dynamic Resetting of Continual Running SRNNs for End-to-End Streaming Keyword Spotting

Bojian Yin, Qinghai Guo, Henk Corporaal, Federico Corradi, Sander Bohte

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
39 Downloads (Pure)

Samenvatting

Efficient end-to-end processing of continuous and streaming signals is one of the key challenges for Artificial Intelligence (AI) in particular for Edge applications that are energy-constrained. Spiking neural networks are explored to achieve efficient edge AI, employing low-latency, sparse processing, and small network size resulting in low-energy operation. Spiking Recurrent Neural Networks (SRNNs) achieve good performance on sample data at excellent network size and energy. When applied to continual streaming data, like a series of concatenated keyword samples, SRNNs, like traditional RNNs, recognize successive information increasingly poorly as the network dynamics become saturated. SRNNs process concatenated streams of data in three steps: i) Relevant signals have to be localized. ii) Evidence then needs to be integrated to classify the signal, and finally, iii) the neural dynamics must be combined with network state resetting events to remedy network saturation. Here we show how a streaming form of attention can aid SRNNs in localizing events in a continuous stream of signals, where a brain-inspired decision-making circuit then integrates evidence to determine the correct classification. This decision then leads to a delayed network reset, remedying network state saturation. We demonstrate the effectiveness of this approach on streams of concatenated keywords, reporting high accuracy combined with low average network activity as the attention signal effectively gates network activity in the absence of signals. We also show that the dynamic normalization effected by the attention mechanism enables a degree of environmental transfer learning, where the same keywords obtained in different circumstances are still correctly classified. The principles presented here also carry over to similar applications of classical RNNs and thus may be of general interest for continual running applications.
Originele taal-2Engels
TitelICONS '22: Proceedings of the International Conference on Neuromorphic Systems 2022
Plaats van productieNew York, NY, USA
UitgeverijAssociation for Computing Machinery, Inc
Aantal pagina's8
ISBN van elektronische versie9781450397896
ISBN van geprinte versie9781450397896
DOI's
StatusGepubliceerd - 7 sep. 2022
Evenement2022 International Conference on Neuromorphic Systems, ICONS 2022 - Knoxville, Verenigde Staten van Amerika
Duur: 27 jul. 202229 jul. 2022

Publicatie series

NaamACM International Conference Proceeding Series

Congres

Congres2022 International Conference on Neuromorphic Systems, ICONS 2022
Land/RegioVerenigde Staten van Amerika
StadKnoxville
Periode27/07/2229/07/22

Vingerafdruk

Duik in de onderzoeksthema's van 'Attentive Decision-Making and Dynamic Resetting of Continual Running SRNNs for End-to-End Streaming Keyword Spotting'. Samen vormen ze een unieke vingerafdruk.

Citeer dit