Asymptotic equivalence of the discrete variational functional and a rate-large-deviation-like functional in the Wasserstein gradient flow of the porous medium equation

M.H. Duong

Onderzoeksoutput: Boek/rapportRapportAcademic

88 Downloads (Pure)

Samenvatting

In this paper, we study the Wasserstein gradient flow structure of the porous medium equation. We prove that, for the case of q -Gaussians on the real line, the functional derived by the JKO-discretization scheme is asymptotically equivalent to a rate-large-deviation-like functional. The result explains why the Wasserstein metric as well as the combination of it with the Tsallis-entropy play an important role.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's17
StatusGepubliceerd - 2013

Publicatie series

NaamarXiv.org
Volume1307.5184 [math.AP]

Vingerafdruk

Duik in de onderzoeksthema's van 'Asymptotic equivalence of the discrete variational functional and a rate-large-deviation-like functional in the Wasserstein gradient flow of the porous medium equation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit