Asymptotic analysis of Emden–Fowler type equation with an application to power flow models

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
35 Downloads (Pure)


Emden–Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden–Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden–Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden–Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden–Fowler type equation that we consider.

Originele taal-2Engels
Pagina's (van-tot)1146-1180
Aantal pagina's35
TijdschriftIndagationes Mathematicae
Nummer van het tijdschrift5
StatusGepubliceerd - sep. 2023

Bibliografische nota

Funding Information:
This research is supported by the Dutch Research Council through the TOP programme under contract number 613.001.801 .

Publisher Copyright:
© 2022 The Author(s)


Duik in de onderzoeksthema's van 'Asymptotic analysis of Emden–Fowler type equation with an application to power flow models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit