Approximation algorithms for computing partitions with minimum stabbing number of rectilinear and simple polygons

M.A. Abam, B. Aronov, M.T. Berg, de, A. Khosravi Dehkordi

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)
345 Downloads (Pure)

Samenvatting

Let P be a rectilinear simple polygon. The stabbing number of a partition of P into rectangles is the maximum number of rectangles stabbed by any axis-parallel line segment inside P. We present a 3-approximation algorithm for the problem of finding a partition with minimum stabbing number. It is based on an algorithm that finds an optimal partition for histograms. We also study Steiner triangulations of a simple (non-rectilinear) polygon P. Here the stabbing number is defined as the maximum number of triangles that can be stabbed by any line segment inside P. We give an O(1)-approximation algorithm for the problem of computing a Steiner triangulation with minimum stabbing number.
Originele taal-2Engels
TitelProceedings 27th Annual ACM Symposium on Computational Geometry (SoCG'11, Paris, France, June 13-15, 2011)
Plaats van productieNew York NY
UitgeverijAssociation for Computing Machinery, Inc.
Pagina's407-416
ISBN van geprinte versie978-1-4503-0682-9
DOI's
StatusGepubliceerd - 2011

Vingerafdruk

Duik in de onderzoeksthema's van 'Approximation algorithms for computing partitions with minimum stabbing number of rectilinear and simple polygons'. Samen vormen ze een unieke vingerafdruk.

Citeer dit