Samenvatting
In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms conventional time-domain approach in the presence of moderate measurement noise. Additionally, carrier synchronization based on Bayesian filtering, in combination with expectation maximization, is demonstrated for the first time experimentally.
Originele taal-2 | Nederlands |
---|---|
Pagina's (van-tot) | 1333-1343 |
Aantal pagina's | 11 |
Tijdschrift | Journal of Lightwave Technology |
Volume | 33 |
Nummer van het tijdschrift | 7 |
DOI's | |
Status | Gepubliceerd - 2015 |
Extern gepubliceerd | Ja |
Trefwoorden
- Communication, Networking and Broadcast Technologies
- Photonics and Electrooptics
- Bayes methods
- Bayesian filtering
- Expectation maximization
- Kalman filters
- Mathematical model
- Optical communication
- Phase noise
- State-space methods
- Synchronization
- Vectors