Ant feature selection using fuzzy decision functions

S.M. Vieira, J.M. Costa Sousa, da, U. Kaymak

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

1 Citaat (Scopus)

Samenvatting

One of the most important stages in data preprocessing for data mining is feature selection. Real-world data analysis, data mining, classification and modeling problems usually involve a large number of candidate inputs or features. Less relevant or highly correlated features decrease in general the classification accuracy, and enlarge the complexity of the classifier. Feature selection is a multi-criteria optimization problem with contradictory objectives, which are difficult to properly describe by conventional cost functions. This chapter proposes the use of fuzzy optimization to improve the performance of this type of system, since it allows for an easier and more transparent description of the criteria used in the feature selection process. In our previous work, an ant colony optimization algorithm for feature selection was proposed, which minimized two objectives: number of features and classification error. In this chapter, a fuzzy objective function is proposed to cope with the difficulty of weighting the different criteria involved in the optimization algorithm. The application of fuzzy feature selection to two benchmark problems show the usefulness of the proposed approach.
Originele taal-2Engels
TitelFuzzy optimization : recent advances and applications
RedacteurenW.A. Lodwick, J. Kacprzyk
Plaats van productieBerlin
UitgeverijSpringer
Pagina's343-364
Aantal pagina's533
ISBN van geprinte versie978-3-642-13934-5
DOI's
StatusGepubliceerd - 2010

Publicatie series

NaamStudies in fuzziness and soft computing
Volume254
ISSN van geprinte versie1434-9922

Vingerafdruk

Duik in de onderzoeksthema's van 'Ant feature selection using fuzzy decision functions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit