Samenvatting
What is the most efficient way of lacing a shoe? Mathematically speaking, this question concerns the structure of certain special cases of the bipartite travelling salesman problem (BTSP).
We show that techniques developed for the analysis of the (standard) TSP may be applied successfully to characterize well-solvable cases of the BTSP and the shoelace problem. In particular, we present a polynomial time algorithm that decides whether there exists a renumbering of the cities such that the resulting distance matrix carries a benevolent combinatorial structure that allows one to write down the optimal solution without further analysis of input data. Our results generalize previously published well-solvable cases of the shoelace problem.
Keywords: Bipartite travelling salesman problem; shoelace problem; polynomially solvable case; relaxed Monge matrix; pick-and-place robot
Originele taal-2 | Engels |
---|---|
Titel | Fun with Algorithms (7th International Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1-3, 2014. Proceedings) |
Redacteuren | A. Ferro, F. Luccio, P. Widmayer |
Plaats van productie | Berlin |
Uitgeverij | Springer |
Pagina's | 125-136 |
ISBN van geprinte versie | 978-3-319-07889-2 |
DOI's | |
Status | Gepubliceerd - 2014 |
Evenement | 7th International Conference on Fun with Algorithms (FUN 2014) - Lipari Island, Sicily, Italië Duur: 1 jul. 2014 → 3 jul. 2014 Congresnummer: 7 |
Publicatie series
Naam | Lecture Notes in Computer Science |
---|---|
Volume | 8496 |
ISSN van geprinte versie | 0302-9743 |
Congres
Congres | 7th International Conference on Fun with Algorithms (FUN 2014) |
---|---|
Verkorte titel | FUN 2014 |
Land/Regio | Italië |
Stad | Lipari Island, Sicily |
Periode | 1/07/14 → 3/07/14 |
Ander | 7th International Conference on Fun with Algorithms |