Samenvatting
We consider the problem of classifying anomalous occupancy sensor behavior in connected indoor lighting systems. Anomalous occupancy sensor behavior may occur in the form of either a high number of false alarms (type-1 anomalies) or missed detection (type-2 anomalies). We consider a supervised machine learning approach to determine whether the detection signal of an occupancy sensor is normal, or exhibits type-1 or type-2 anomalies. We devise occupancy signal features in the time and frequency domains and employ a random forest classifier to perform 3-class classification. The proposed method is evaluated using motion sensor data from an office building, and is shown to have higher true positive rate and a lower false positive rate in comparison to an unsupervised k-means method and a random forest classifier with a single signal energy feature.
Originele taal-2 | Engels |
---|---|
Titel | IEEE 5th World Forum on Internet of Things, WF-IoT 2019 - Conference Proceedings |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 335-339 |
Aantal pagina's | 5 |
ISBN van elektronische versie | 978-1-5386-4980-0 |
DOI's | |
Status | Gepubliceerd - 1 apr. 2019 |
Evenement | 5th IEEE World Forum on Internet of Things, WF-IoT 2019 - Limerick, Ierland Duur: 15 apr. 2019 → 18 apr. 2019 |
Congres
Congres | 5th IEEE World Forum on Internet of Things, WF-IoT 2019 |
---|---|
Land/Regio | Ierland |
Stad | Limerick |
Periode | 15/04/19 → 18/04/19 |