AngioMoCo: Learning-based Motion Correction in Cerebral Digital Subtraction Angiography

Ruisheng Su, Matthijs van der Sluijs, Sandra A.P. Cornelissen, Wim H. van Zwam, Aad van der Lugt, Wiro J. Niessen, Danny Ruijters, Theo van Walsum, Adrian V. Dalca

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Downloads (Pure)

Samenvatting

Cerebral X-ray digital subtraction angiography (DSA) is the standard imaging technique for visualizing blood flow and guiding endovascular treatments. The quality of DSA is often negatively impacted by body motion during acquisition, leading to decreased diagnostic value. Traditional methods address motion correction based on non-rigid registration and employ sparse key points and non-rigidity penalties to limit vessel distortion, which is time-consuming. Recent methods alleviate subtraction artifacts by predicting the subtracted frame from the corresponding unsubtracted frame, but do not explicitly compensate for motion-induced misalignment between frames. This hinders the serial evaluation of blood flow, and often causes undesired vasculature and contrast flow alterations, leading to impeded usability in clinical practice. To address these limitations, we present AngioMoCo, a learning-based framework that generates motion-compensated DSA sequences from X-ray angiography. AngioMoCo integrates contrast extraction and motion correction, enabling differentiation between patient motion and intensity changes caused by contrast flow. This strategy improves registration quality while being orders of magnitude faster than iterative elastix-based methods. We demonstrate AngioMoCo on a large national multi-center dataset (MR CLEAN Registry) of clinically acquired angiographic images through comprehensive qualitative and quantitative analyses. AngioMoCo produces high-quality motion-compensated DSA, removing while preserving contrast flow. Code is publicly available at.
Originele taal-2Engels
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2023
Subtitel26th International Conference, Vancouver, BC, Canada, October 8–12, 2023, Proceedings, Part VII
RedacteurenHayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer-Syeda Mahmood, Russell Taylor
Plaats van productieCham
UitgeverijSpringer
Pagina's770-780
Aantal pagina's11
ISBN van elektronische versie978-3-031-43990-2
ISBN van geprinte versie978-3-031-43989-6
DOI's
StatusGepubliceerd - 1 okt. 2023
Extern gepubliceerdJa
Evenement26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023 - Vancouver Convention Centre Canada, Vancouver, Canada
Duur: 8 okt. 202312 okt. 2023
Congresnummer: 26
https://conferences.miccai.org/2023/en/
https://switchmiccai.github.io/switch/

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume14226
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023
Verkorte titelMICCAI
Land/RegioCanada
StadVancouver
Periode8/10/2312/10/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'AngioMoCo: Learning-based Motion Correction in Cerebral Digital Subtraction Angiography'. Samen vormen ze een unieke vingerafdruk.

Citeer dit