An upper bound for front propagation velocities inside moving populations

A. Gaudillière, F.R. Nardi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
62 Downloads (Pure)


We consider a two-type (red and blue or R and B) particle population that evolves on the d-dimensional lattice according to some reaction-diffusion process R+B¿2R and starts with a single red particle and a density ¿ of blue particles. For two classes of models we give an upper bound on the propagation velocity of the red particles front with explicit dependence on ¿. In the first class of models red particles evolve with a diffusion constant DR=1. Blue particles evolve with a possibly time-dependent jump rate DB=0, or, more generally, follow independent copies of some bistochastic process. Examples of bistochastic process also include long-range random walks with drift and various deterministic processes. For this class of models we get in all dimensions an upper bound of order that depends only on ¿ and d and not on the specific process followed by blue particles, in particular that does not depend on DB. We argue that for d=2 or ¿=1 this bound can be optimal (in ¿), while for the simplest case with d=1 and ¿
Originele taal-2Engels
Pagina's (van-tot)256-278
TijdschriftBrazilian Journal of Probability and Statistics
Nummer van het tijdschrift2
StatusGepubliceerd - 2010

Vingerafdruk Duik in de onderzoeksthema's van 'An upper bound for front propagation velocities inside moving populations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit