An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects

Onderzoeksoutput: Bijdrage aan tijdschriftArtikel recenserenAcademicpeer review

24 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

In this paper, we discuss the model predictive control algorithms that are tailored for uncertain systems. Robustness notions with respect to both deterministic (or set based) and stochastic uncertainties are discussed and contributions are reviewed in the model predictive control literature. We present, classify and compare different notions of the robustness properties of state of the art algorithms, while a substantial emphasis is given to the closed-loop performance and computational complexity properties. Furthermore, connections between (i) the theory of risk and (ii) robust optimization research areas and robust model predictive control are discussed. Lastly, we provide a comparison of current robust model predictive control algorithms via simulation examples illustrating closed loop performance and computational complexity features.

Originele taal-2Engels
Pagina's (van-tot)77-102
Aantal pagina's26
TijdschriftJournal of Process Control
Volume61
DOI's
StatusGepubliceerd - 1 jan 2018

Vingerafdruk Duik in de onderzoeksthema's van 'An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects'. Samen vormen ze een unieke vingerafdruk.

Citeer dit