An Organoid for Woven Bone

Anat Akiva (Corresponding author), Johanna Melke, Sana Ansari, Nalan Liv, Robin van der Meijden, Merijn van Erp, Feihu Zhao, Merula Stout, Wouter H. Nijhuis, Cilia de Heus, Claudia Muñiz Ortera, Job Fermie, Judith Klumperman, Keita Ito, Nico Sommerdijk, Sandra Hofmann

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)


Bone formation (osteogenesis) is a complex process in which cellular differentiation and the generation of a mineralized organic matrix are synchronized to produce a hybrid hierarchical architecture. To study the mechanisms of osteogenesis in health and disease, there is a great need for functional model systems that capture in parallel, both cellular and matrix formation processes. Stem cell-based organoids are promising as functional, self-organizing 3D in vitro models for studying the physiology and pathology of various tissues. However, for human bone, no such functional model system is yet available. This study reports the in vitro differentiation of human bone marrow stromal cells into a functional 3D self-organizing co-culture of osteoblasts and osteocytes, creating an organoid for early stage bone (woven bone) formation. It demonstrates the formation of an organoid where osteocytes are embedded within the collagen matrix that is produced by the osteoblasts and mineralized under biological control. Alike in in vivo osteocytes, the embedded osteocytes show network formation and communication via expression of sclerostin. The current system forms the most complete 3D living in vitro model system to investigate osteogenesis, both in physiological and pathological situations, as well as under the influence of external triggers (mechanical stimulation, drug administration).

Originele taal-2Engels
Aantal pagina's9
TijdschriftAdvanced Functional Materials
Nummer van het tijdschrift17
Vroegere onlinedatum9 mrt 2021
StatusGepubliceerd - 22 apr 2021

Bibliografische nota

Publisher Copyright:
© 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

Copyright 2021 Elsevier B.V., All rights reserved.

Vingerafdruk Duik in de onderzoeksthema's van 'An Organoid for Woven Bone'. Samen vormen ze een unieke vingerafdruk.

Citeer dit