An open source AutoML benchmark

Pieter Gijsbers, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl, Joaquin Vanschoren

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

12 Downloads (Pure)

Uittreksel

In recent years, an active field of research has developed around automated machine learning(AutoML). Unfortunately, comparing different AutoML systems is hard and often doneincorrectly. We introduce an open, ongoing, and extensible benchmark framework whichfollows best practices and avoids common mistakes. The framework is open-source, usespublic datasets and has a website with up-to-date results. We use the framework to conducta thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.
Originele taal-2Engels
Aantal pagina's8
StatusGepubliceerd - jun 2019
Evenement6th ICML Workshop on Automated Machine Learning - Long Beach, Verenigde Staten van Amerika
Duur: 14 jun 201914 jun 2019
https://sites.google.com/view/automl2019icml/home

Workshop

Workshop6th ICML Workshop on Automated Machine Learning
Verkorte titelAutoML@ICML2019
LandVerenigde Staten van Amerika
StadLong Beach
Periode14/06/1914/06/19
Internet adres

Vingerafdruk

Learning systems
Websites

Citeer dit

Gijsbers, P., LeDell, E., Poirier, S., Thomas, J., Bischl, B., & Vanschoren, J. (2019). An open source AutoML benchmark. Paper gepresenteerd op 6th ICML Workshop on Automated Machine Learning, Long Beach, Verenigde Staten van Amerika.
Gijsbers, Pieter ; LeDell, Erin ; Poirier, Sébastien ; Thomas, Janek ; Bischl, Bernd ; Vanschoren, Joaquin. / An open source AutoML benchmark. Paper gepresenteerd op 6th ICML Workshop on Automated Machine Learning, Long Beach, Verenigde Staten van Amerika.8 blz.
@conference{4ae49c3aade448858065f3a0e1bd3cee,
title = "An open source AutoML benchmark",
abstract = "In recent years, an active field of research has developed around automated machine learning(AutoML). Unfortunately, comparing different AutoML systems is hard and often doneincorrectly. We introduce an open, ongoing, and extensible benchmark framework whichfollows best practices and avoids common mistakes. The framework is open-source, usespublic datasets and has a website with up-to-date results. We use the framework to conducta thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.",
keywords = "AutoML, benchmark, open source",
author = "Pieter Gijsbers and Erin LeDell and S{\'e}bastien Poirier and Janek Thomas and Bernd Bischl and Joaquin Vanschoren",
year = "2019",
month = "6",
language = "English",
note = "6th ICML Workshop on Automated Machine Learning, AutoML@ICML2019 ; Conference date: 14-06-2019 Through 14-06-2019",
url = "https://sites.google.com/view/automl2019icml/home",

}

Gijsbers, P, LeDell, E, Poirier, S, Thomas, J, Bischl, B & Vanschoren, J 2019, 'An open source AutoML benchmark' Paper gepresenteerd op, Long Beach, Verenigde Staten van Amerika, 14/06/19 - 14/06/19, .

An open source AutoML benchmark. / Gijsbers, Pieter; LeDell, Erin; Poirier, Sébastien; Thomas, Janek; Bischl, Bernd; Vanschoren, Joaquin.

2019. Paper gepresenteerd op 6th ICML Workshop on Automated Machine Learning, Long Beach, Verenigde Staten van Amerika.

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

TY - CONF

T1 - An open source AutoML benchmark

AU - Gijsbers, Pieter

AU - LeDell, Erin

AU - Poirier, Sébastien

AU - Thomas, Janek

AU - Bischl, Bernd

AU - Vanschoren, Joaquin

PY - 2019/6

Y1 - 2019/6

N2 - In recent years, an active field of research has developed around automated machine learning(AutoML). Unfortunately, comparing different AutoML systems is hard and often doneincorrectly. We introduce an open, ongoing, and extensible benchmark framework whichfollows best practices and avoids common mistakes. The framework is open-source, usespublic datasets and has a website with up-to-date results. We use the framework to conducta thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.

AB - In recent years, an active field of research has developed around automated machine learning(AutoML). Unfortunately, comparing different AutoML systems is hard and often doneincorrectly. We introduce an open, ongoing, and extensible benchmark framework whichfollows best practices and avoids common mistakes. The framework is open-source, usespublic datasets and has a website with up-to-date results. We use the framework to conducta thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.

KW - AutoML

KW - benchmark

KW - open source

M3 - Paper

ER -

Gijsbers P, LeDell E, Poirier S, Thomas J, Bischl B, Vanschoren J. An open source AutoML benchmark. 2019. Paper gepresenteerd op 6th ICML Workshop on Automated Machine Learning, Long Beach, Verenigde Staten van Amerika.