An interpretable XGBoost-based approach for Arctic navigation risk assessment

Shuaiyu Yao, Qinhao Wu (Corresponding author), Qi Kang (Corresponding author), Yu-Wang Chen, Yi Lu

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)
20 Downloads (Pure)

Samenvatting

The Northern Sea Route (NSR) makes travel between Europe and Asia shorter and quicker than a southern transit via the Strait of Malacca and Suez Canal. It provides greater access to Arctic resources such as oil and gas. As global warming accelerates, melting Arctic ice caps are likely to increase traffic in the NSR and enhance its commercial viability. Due to the harsh Arctic environment imposing threats to the safety of ship navigation, it is necessary to assess Arctic navigation risk to maintain shipping safety. Currently, most studies are focused on the conventional assessment of the risk, which lacks the validation based on actual data. In this study, actual data about Arctic navigation environment and related expert judgments were used to generate a structured data set. Based on the structured data set, extreme gradient boosting (XGBoost) and alternative methods were used to establish models for the assessment of Arctic navigation risk, which were validated using cross-validation. The results show that compared with alternative models, XGBoost models have the best performance in terms of mean absolute errors and root mean squared errors. The XGBoost models can learn and reproduce expert judgments and knowledge for the assessment of Arctic navigation risk. Feature importance (FI) and shapley additive explanations (SHAP) are used to further interpret the relationship between input data and predictions. The application of XGBoost, FI, and SHAP is aimed to improve the safety of Arctic shipping using advanced artificial intelligence techniques. The validated assessment enhances the quality and robustness of assessment.

Originele taal-2Engels
Pagina's (van-tot)459-476
Aantal pagina's18
TijdschriftRisk Analysis
Volume44
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - feb. 2024

Bibliografische nota

Publisher Copyright:
© 2023 Society for Risk Analysis.

Vingerafdruk

Duik in de onderzoeksthema's van 'An interpretable XGBoost-based approach for Arctic navigation risk assessment'. Samen vormen ze een unieke vingerafdruk.

Citeer dit