An inequality connecting entropy distance, Fisher Information and large deviations

Bastian Hilder (Corresponding author), Mark A. Peletier (Corresponding author), Upanshu Sharma, Oliver Tse

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
66 Downloads (Pure)


In this paper we introduce a new generalisation of the relative Fisher Information for Markov jump processes on a finite or countable state space, and prove an inequality which connects this object with the relative entropy and a large deviation rate functional. In addition to possessing various favourable properties, we show that this generalised Fisher Information converges to the classical Fisher Information in an appropriate limit. We then use this generalised Fisher Information and the aforementioned inequality to qualitatively study coarse-graining problems for jump processes on discrete spaces.

Originele taal-2Engels
Pagina's (van-tot)2596-2638
Aantal pagina's43
TijdschriftStochastic Processes and their Applications
Nummer van het tijdschrift5
StatusGepubliceerd - mei 2020


Duik in de onderzoeksthema's van 'An inequality connecting entropy distance, Fisher Information and large deviations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit