An identification algorithm for parallel Wiener-Hammerstein systems

M. Schoukens, G. Vandersteen, Y. Rolain

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

14 Citaten (Scopus)

Samenvatting

Block-oriented nonlinear models such as Wiener and Hammerstein models have the advantage that they are quite simple to understand and easy to use. Hammerstein and Wiener models can be extended to models containing extra blocks in a series connection such as Wiener-Hammerstein models. To further increase the modeling power of block-oriented models a parallel connection of Wiener-Hammerstein branches is considered. T his paper presents a parametric identification algorithm for parallel Wiener-Hammerstein systems in discrete time starting from input-output data only. First, the overall dynamics of the system are estimated in least squares sense at different operating points of the system. Second, these dynamics are decomposed over the parallel branches, and partitioned into the front and back linear time invariant (LTI) blocks, giving an estimate of the LTI blocks. Finally, the static nonlinearities are estimated using a linear least squares estimator.

Originele taal-2Engels
Titel2013 IEEE 52nd Annual Conference on Decision and Control, CDC 2013
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's4907-4912
Aantal pagina's6
ISBN van geprinte versie9781467357173
DOI's
StatusGepubliceerd - 1 jan. 2013
Extern gepubliceerdJa
Evenement52nd IEEE Conference on Decision and Control (CDC 2013) - Florence, Italië
Duur: 10 dec. 201313 dec. 2013
Congresnummer: 52

Congres

Congres52nd IEEE Conference on Decision and Control (CDC 2013)
Verkorte titelCDC 2013
Land/RegioItalië
StadFlorence
Periode10/12/1313/12/13
Ander52nd IEEE Conference on Decision and Control

Vingerafdruk

Duik in de onderzoeksthema's van 'An identification algorithm for parallel Wiener-Hammerstein systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit