An Event-Driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA

Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos Alachiotis, Federico Corradi

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
153 Downloads (Pure)

Samenvatting

Spiking Neural Network (SNN) architectures are promising candidates for executing machine intelligence at the edge while meeting strict energy and cost reduction constraints in several application areas. To this end, we propose a new digital architecture compatible with Recurrent Spiking Neural Networks (RSNNs) trained using the PyTorch framework and Back-Propagation-Through-Time (BPTT) for optimizing the weights and the neuron’s parameters. Our architecture offers high software-to-hardware fidelity, providing high accuracy and a low number of spikes, and it targets efficient and low-cost implementations in Field Programmable Gate Arrays (FPGAs). We introduce a new time-discretization technique that uses request-acknowledge cycles between layers to allow the layer’s time execution to depend only upon the number of spikes. As a result, we achieve between 1.7x and 30x lower resource utilization and between 11x and 61x fewer spikes per inference than previous SNN implementations in FPGAs that rely on on-chip memory to store spike-time information and weight values. We demonstrate our approach using two benchmarks: MNIST digit recognition and a realistic radar and image sensory fusion for cropland classifications. Our results demonstrate that we can exploit the trade-off between accuracy, latency, and resource utilization at design time. Moreover, the use of low-cost FPGA platforms enables the deployment of several applications by satisfying the strict constraints of edge machine learning devices.
Originele taal-2Engels
TitelICONS '22: Proceedings of the International Conference on Neuromorphic Systems 2022
Plaats van productieNew York, NY, USA
UitgeverijAssociation for Computing Machinery, Inc
Pagina's1-8
ISBN van elektronische versie9781450397896
ISBN van geprinte versie9781450397896
DOI's
StatusGepubliceerd - 27 jul. 2022
Evenement2022 International Conference on Neuromorphic Systems, ICONS 2022 - Knoxville, Verenigde Staten van Amerika
Duur: 27 jul. 202229 jul. 2022

Publicatie series

NaamACM International Conference Proceeding Series

Congres

Congres2022 International Conference on Neuromorphic Systems, ICONS 2022
Land/RegioVerenigde Staten van Amerika
StadKnoxville
Periode27/07/2229/07/22

Vingerafdruk

Duik in de onderzoeksthema's van 'An Event-Driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA'. Samen vormen ze een unieke vingerafdruk.

Citeer dit