An empirical Bayes approach to identification of modules in dynamic networks

N. Everitt, G. Bottegal, H. Hjalmarsson

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

25 Citaten (Scopus)
3 Downloads (Pure)


We present a new method of identifying a specific module in a dynamic network, possibly with feedback loops. Assuming known topology, we express the dynamics by an acyclic network composed of two blocks where the first block accounts for the relation between the known reference signals and the input to the target module, while the second block contains the target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix (kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving a marginal likelihood problem with a novel iterative scheme based on the Expectation–Maximization algorithm. Additionally, we extend the method to include additional measurements downstream of the target module. Using Markov Chain Monte Carlo techniques, it is shown that the same iterative scheme can solve also this formulation. Numerical experiments illustrate the effectiveness of the proposed methods.

Originele taal-2Engels
Pagina's (van-tot)144-151
Aantal pagina's8
StatusGepubliceerd - 1 mei 2018


Duik in de onderzoeksthema's van 'An empirical Bayes approach to identification of modules in dynamic networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit