An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

Rodrigo González, Angel Cedeño, María Coronel, Juan C. Agüero, Cristian R. Rojas

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

1 Citaat (Scopus)
60 Downloads (Pure)

Samenvatting

This paper concerns the identification of continuous-time systems in state-space
form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we
use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.
Originele taal-2Engels
Pagina's (van-tot)4204-4209
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume56
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 jul. 2023
Evenement22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan
Duur: 9 jul. 202314 jul. 2023
Congresnummer: 22
https://www.ifac2023.org/

Vingerafdruk

Duik in de onderzoeksthema's van 'An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit