An efficient quasi-Newton method for two-dimensional steady free surface flow

Toon Demeester (Corresponding author), E. Harald van Brummelen, Joris Degroote

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review


Steady free surface flows are of interest in the fields of marine and hydraulic engineering. Fitting methods are generally used to represent the free surface position with a deforming grid. Existing fitting methods tend to use time-stepping schemes, which is inefficient for steady flows. There also exists a steady iterative method, but that one needs to be implemented with a dedicated solver. Therefore a new method is proposed to efficiently simulate two-dimensional (2D) steady free surface flows, suitable for use in conjunction with black-box flow solvers. The free surface position is calculated with a quasi-Newton method, where the approximate Jacobian is constructed in a novel way by combining data from past iterations with an analytical model based on a perturbation analysis of a potential flow. The method is tested on two 2D cases: the flow over a bottom topography and the flow over a hydrofoil. For all simulations the new method converges exponentially and in few iterations. Furthermore, convergence is independent of the free surface mesh size for all tests.

Originele taal-2Engels
Pagina's (van-tot)785-801
Aantal pagina's17
TijdschriftInternational Journal for Numerical Methods in Fluids
Nummer van het tijdschrift7
Vroegere onlinedatum9 jan 2020
StatusGepubliceerd - 1 jul 2020

Vingerafdruk Duik in de onderzoeksthema's van 'An efficient quasi-Newton method for two-dimensional steady free surface flow'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit