An efficient physics-based model order reduction for geometrically nonlinear solid mechanics

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Downloads (Pure)

Samenvatting

Model order reduction simplifies detailed and complex Finite Element (FE) models by solving a reduced set of equations, typically through projection methods. This work proposes a physics-based model order reduction technique that circumvents the need for training data to solve quasi-static geometrically non-linear solid mechanics utilizing the concept of modal derivatives. This method comprises two key components. Firstly, the modified Gram–Schmidt process is incorporated to ensure an orthogonal projection in the reduction procedure. Secondly, a greedy selection algorithm that constructs the projection function with the most significant modal derivatives. This proposed method is applied to various test cases, showcasing its validity and efficacy in diverse scenarios.
Originele taal-2Engels
Artikelnummer104351
Aantal pagina's19
TijdschriftFinite Elements in Analysis and Design
Volume248
DOI's
StatusGepubliceerd - 1 jun. 2025

Financiering

The work presented is supported by the ITEA3 UPSIM project (N\u00B019006), partially funded by the Rijksdienst voor Ondernemend Nederland, Netherlands (RVO).

FinanciersFinanciernummer
Rijksdienst voor Ondernemend Nederland (RVO) - opdrachtgever

    Vingerafdruk

    Duik in de onderzoeksthema's van 'An efficient physics-based model order reduction for geometrically nonlinear solid mechanics'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit