An axiomatization of strong distribution bisimulation for a language with a parallel operator and probabilistic choice

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

Samenvatting

In the setting of a simple process language featuring non-deterministic choice and a parallel operator on the one hand and probabilistic choice on the other hand, we propose an axiomatization capturing strong distribution bisimulation. Contrary to other process equivalences for probabilistic process languages, in this paper distributions rather than states are the leading ingredients for building the semantics and the accompanying equational theory, for which we establish soundness and completeness.

Originele taal-2Engels
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
RedacteurenMaurice H. ter Beek, Alessandro Fantechi, Laura Semini
Plaats van productieCham
UitgeverijSpringer
Pagina's449-463
Aantal pagina's15
ISBN van elektronische versie978-3-030-30985-5
ISBN van geprinte versie978-3-030-30984-8
DOI's
StatusGepubliceerd - 2019

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11865 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Vingerafdruk Duik in de onderzoeksthema's van 'An axiomatization of strong distribution bisimulation for a language with a parallel operator and probabilistic choice'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Groote, J. F., & de Vink, E. P. (2019). An axiomatization of strong distribution bisimulation for a language with a parallel operator and probabilistic choice. In M. H. ter Beek, A. Fantechi, & L. Semini (editors), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (blz. 449-463). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11865 LNCS). Springer. https://doi.org/10.1007/978-3-030-30985-5_26