Samenvatting
We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)1/2), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t1/2 log n) bound. Our result also extends to the more general Komlós setting and gives an algorithmic O(log1/2 n) bound.
Originele taal-2 | Engels |
---|---|
Titel | 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 9-11 October 2016, New Brunswick, New Jersey |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 788-799 |
ISBN van elektronische versie | 978-1-5090-3933-3 |
ISBN van geprinte versie | 978-1-5090-3934-0 |
DOI's | |
Status | Gepubliceerd - 2016 |