An algorithm for komlos conjecture matching Banaszczyk's bound

N. Bansal, D. Dadush, S. Garg

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

31 Citaten (Scopus)

Samenvatting

We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)1/2), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t1/2 log n) bound. Our result also extends to the more general Komlós setting and gives an algorithmic O(log1/2 n) bound.
Originele taal-2Engels
Titel2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 9-11 October 2016, New Brunswick, New Jersey
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's788-799
ISBN van elektronische versie978-1-5090-3933-3
ISBN van geprinte versie978-1-5090-3934-0
DOI's
StatusGepubliceerd - 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'An algorithm for komlos conjecture matching Banaszczyk's bound'. Samen vormen ze een unieke vingerafdruk.

Citeer dit