An Adaptive Restart Heavy-Ball Projected Primal-Dual Method for Solving Constrained Linear Quadratic Optimal Control Problems

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Downloads (Pure)

Samenvatting

This paper presents a fast and flexible projected primal-dual method for solving linear quadratic optimal control problems with box constraints. Using a specific preconditioning, the algorithm achieves dead-beat convergence for unconstrained problems and has fast convergence for constrained problems. Accelerated convergence is obtained by applying a heavy-ball method to accelerate the projected primal-dual algorithm. In order to avoid missing critical points due to high momentum, an adaptive restarting procedure is used to slow the algorithm down if the solution diverges. Furthermore, convergence is proven by representing the algorithm as a Lur'e-type dynamic system and applying LaSalle's invariance principle to show the fixed point is asymptotically stable. The resulting algorithm is simple, while also achieving competitive computational times.
Originele taal-2Engels
Titel60th IEEE Conference on Decision and Control (CDC 2021)
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's6
StatusGeaccepteerd/In druk - 2021
Evenement60th IEEE Conference on Decision and Control (CDC 2021) - Austin, Verenigde Staten van Amerika
Duur: 13 dec 202117 dec 2021
Congresnummer: 60
https://2021.ieeecdc.org/

Congres

Congres60th IEEE Conference on Decision and Control (CDC 2021)
Verkorte titelCDC 2021
Land/RegioVerenigde Staten van Amerika
StadAustin
Periode13/12/2117/12/21
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'An Adaptive Restart Heavy-Ball Projected Primal-Dual Method for Solving Constrained Linear Quadratic Optimal Control Problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit