An adaptive multi-critic neuro-fuzzy control framework for intravenous anesthesia administration

Mohammad Javad Khodaei, M. Hadi Balaghi I., Amin Mehrvarz, Nader Jalili (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelAcademicpeer review

6 Citaten (Scopus)
36 Downloads (Pure)


Development of closed-loop control strategies for drug infusion and delivery is one of the most recent efforts of control engineers and clinicians. This can be used especially in anesthesia during different surgeries to stabilize the patient in the desired awareness condition. In this paper, an adaptive neuro-fuzzy controller is proposed to overcome the current challenges in closed-loop control of anesthesia such as inter and intra patient variability, complex and nonlinear dynamics, measurement noises and surgical disturbances as well as the presence of undershoot and overshoot in the induction phase. The results show an acceptable performance of the proposed controller in solving these problems by providing a learning scheme.

Originele taal-2Engels
Pagina's (van-tot)202-207
Aantal pagina's6
Nummer van het tijdschrift34
StatusGepubliceerd - 8 feb 2019
Evenement2nd IFAC Conference on Cyber-Physical and Human Systems CPHS 2018 - Miami, Verenigde Staten van Amerika
Duur: 13 dec 201815 dec 2018


Duik in de onderzoeksthema's van 'An adaptive multi-critic neuro-fuzzy control framework for intravenous anesthesia administration'. Samen vormen ze een unieke vingerafdruk.

Citeer dit