Algebraic necessary and sufficient conditions for the controllability of conewise linear systems

M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

47 Citaten (Scopus)
137 Downloads (Pure)

Samenvatting

The problem of checking certain controllability properties of even very simple piecewise linear systems is known to be undecidable. This paper focuses on conewise linear systems, i.e. systems for which the state space is partitioned into conical regions and a linear dynamics is active on each of these regions. For this class of systems, we present algebraic necessary and sufficient conditions for controllability. We also show that the classical results of controllability of linear systems and input-constrained linear systems can be recovered from our main result. Our treatment employs tools both from geometric control theory and mathematical programming.
Originele taal-2Engels
Pagina's (van-tot)762-774
TijdschriftIEEE Transactions on Automatic Control
Volume53
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Algebraic necessary and sufficient conditions for the controllability of conewise linear systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit