Algebraic matroids and Frobenius flocks

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
57 Downloads (Pure)

Samenvatting

We show that each algebraic representation of a matroid M in positive characteristic determines a matroid valuation of M, which we have named the Lindström valuation. If this valuation is trivial, then a linear representation of M in characteristic p can be derived from the algebraic representation. Thus, so-called rigid matroids, which only admit trivial valuations, are algebraic in positive characteristic p if and only if they are linear in characteristic p. To construct the Lindström valuation, we introduce new matroid representations called flocks, and show that each algebraic representation of a matroid induces flock representations.

Originele taal-2Engels
Pagina's (van-tot)688-719
Aantal pagina's32
TijdschriftAdvances in Mathematics
Volume323
DOI's
StatusGepubliceerd - 7 jan 2018

Vingerafdruk Duik in de onderzoeksthema's van 'Algebraic matroids and Frobenius flocks'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit