Algebraic characterizations of outerplanar and planar graphs

H. Holst, van der

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)

Samenvatting

A drawing of a graph in the plane is even if nonadjacent edges have an even number of intersections. Hanani’s theorem characterizes planar graphs as those graphs that have an even drawing. In this paper we present an algebraic characterization of graphs that have an even drawing. Together with Hanani’s theorem this yields an algebraic characterization of planar graphs. We will also present algebraic characterizations of subgraphs of paths, and of outerplanar graphs.
Originele taal-2Engels
Pagina's (van-tot)2156-2166
TijdschriftEuropean Journal of Combinatorics
Volume28
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - 2007

Vingerafdruk Duik in de onderzoeksthema's van 'Algebraic characterizations of outerplanar and planar graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit