AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance

Cian Scannell (Corresponding author), Ebraham Alskaf, Noor Sharrack, Reza Rezavi, Sebastien Ourselin, Alistair Young, Sven Plein, Amedeo Chiribiri

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Downloads (Pure)

Samenvatting

Aims:
One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.

Methods and results:
A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (n = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann–Whitney U test and Bland–Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), P = 0.33. Bland–Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of −0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.

Conclusion:
Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.
Originele taal-2Engels
Artikelnummerztac074
Pagina's (van-tot)12-21
Aantal pagina's10
TijdschriftEuropean Heart Journal - Digital Health
Volume4
Nummer van het tijdschrift1
Vroegere onlinedatum16 dec. 2022
DOI's
StatusGepubliceerd - jan. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance'. Samen vormen ze een unieke vingerafdruk.

Citeer dit