Aggregated deep local features for remote sensing image retrieval

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

10 Citaten (Scopus)
43 Downloads (Pure)


Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g., 50% faster than the current systems.
Originele taal-2Engels
Aantal pagina's23
TijdschriftRemote Sensing
Nummer van het tijdschrift5
StatusGepubliceerd - 1 mrt 2019

Vingerafdruk Duik in de onderzoeksthema's van 'Aggregated deep local features for remote sensing image retrieval'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit