Adaptive sensing performance lower bounds for sparse signal detection and support estimation

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Citaten (Scopus)
107 Downloads (Pure)


This paper gives a precise characterization of the fundamental limits of adaptive sensing for diverse estimation and testing problems concerning sparse signals. We consider in particular the setting introduced in (IEEE Trans. Inform. Theory 57 (2011) 6222–6235) and show necessary conditions on the minimum signal magnitude for both detection and estimation: if x ¿ R^n is a sparse vector with s non-zero components then it can be reliably detected in noise provided the magnitude of the non-zero components exceeds v 2/s . Furthermore, the signal support can be exactly identified provided the minimum magnitude exceedsv 2 log s . Notably there is no dependence on n , the extrinsic signal dimension. These results show that the adaptive sensing methodologies proposed previously in the literature are essentially optimal, and cannot be substantially improved. In addition, these results provide further insights on the limits of adaptive compressive sensing.
Originele taal-2Engels
Pagina's (van-tot)2217-2246
Aantal pagina's30
Nummer van het tijdschrift4
StatusGepubliceerd - 2014

Vingerafdruk Duik in de onderzoeksthema's van 'Adaptive sensing performance lower bounds for sparse signal detection and support estimation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit