Adaptive quantile estimation in deconvolution with unknown error distribution

I.M. Dattner, M. Reiß, M. Trabs

Onderzoeksoutput: Boek/rapportRapportAcademic

134 Downloads (Pure)


Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Our plug-in method is based on a deconvolution density estimator and is minimax optimal under minimal and natural conditions. This closes an important gap in the literature. Optimal adaptive estimation is obtained by a data-driven bandwidth choice. As a side result we obtain optimal rates for the plug-in estimation of distribution functions with unknown error distributions. The method is applied to a real data example.
Originele taal-2Engels
Aantal pagina's36
StatusGepubliceerd - 2013

Publicatie series
Volume1303.1698 [math.ST]


Duik in de onderzoeksthema's van 'Adaptive quantile estimation in deconvolution with unknown error distribution'. Samen vormen ze een unieke vingerafdruk.

Citeer dit