Samenvatting
We study location-scale mixture priors for nonparametric statistical problems, including multivariate regression, density estimation and classification. We show that a rate-adaptive procedure can be obtained if the prior is properly constructed. In particular, we show that adaptation is achieved if a kernel mixture prior on a regression function is constructed using a Gaussian kernel, an inverse gamma bandwidth, and Gaussian mixing weights.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 3300-3320 |
Tijdschrift | The Annals of Statistics |
Volume | 38 |
Nummer van het tijdschrift | 6 |
DOI's | |
Status | Gepubliceerd - 2010 |