Adaptive Importance Sampling Message Passing

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)

Samenvatting

The aim of Probabilistic Programming (PP) is to automate inference in probabilistic models. One efficient realization of PP-based inference concerns variational message passing-based (VMP) inference in a factor graph. VMP is efficient but in principle only leads to closed-form update rules in case the model consists of conjugate and/or conditionally conjugate factor pairs. Recently, Extended Variational Message Passing (EVMP) has been proposed to broaden the applicability of VMP by importance sampling-based particle methods for non-linear and non-conjugate factor pairs. EVMP automates the importance sampling procedure by employing forward messages as proposal distributions, which unfortunately may lead to inaccurate estimation results and numerical instabilities in case the forward message is not a good representative of the unknown correct posterior. This paper addresses this issue by integrating an adaptive importance sampling procedure with message passing-based inference. The resulting method is a hyperparameter-free approximate inference engine that combines recent advances in stochastic adaptive importance sampling and optimization methods. We provide an implementation for the proposed method in the Julia package ForneyLab.jl.

Originele taal-2Engels
Titel2022 IEEE International Symposium on Information Theory, ISIT 2022
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1199-1204
Aantal pagina's6
ISBN van elektronische versie9781665421591
DOI's
StatusGepubliceerd - 3 aug. 2022
Evenement2022 IEEE International Symposium on Information Theory, ISIT 2022 - Aalto University , Espoo, Finland
Duur: 26 jun. 20221 jul. 2022
https://www.isit2022.org/

Congres

Congres2022 IEEE International Symposium on Information Theory, ISIT 2022
Verkorte titelISIT
Land/RegioFinland
StadEspoo
Periode26/06/221/07/22
Internet adres

Bibliografische nota

Publisher Copyright:
© 2022 IEEE.

Vingerafdruk

Duik in de onderzoeksthema's van 'Adaptive Importance Sampling Message Passing'. Samen vormen ze een unieke vingerafdruk.

Citeer dit