Adaptive EEG channel selection for nonconvulsive seizure analysis

Ying Wang, Xi Long, Hans van Dijk, Ronald Aarts, Johan Arends

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)
74 Downloads (Pure)

Samenvatting

A preliminary work of the nonconvulsive seizure detection system is presented here. The system aims at detecting nonconvulsive seizures for epilepsy patients, targeting a 24/7 monitoring based on continuous electroencephalography (EEG) signals. It has been observed that the interesting seizure-related brain activities in some of the multi-channel EEG signals were weak, often with a noisy background or artifacts, and this might also be patient-dependent. Therefore, using the 'best' channels with a good signal quality is expected to enhance the seizure detection performance. This paper describes a method to select the 'best' EEG channels adaptively from the data of nonconvulsive seizure patients. A signal quality index (SQI) was proposed, where a higher SQI of a channel (signal) indicates a stronger brain activity associated with the ictals of nonconvulsive seizures and less artifacts. The validity of the SQI for adaptive channel selection is demonstrated in this paper. Advantages and limitations of our proposed method were discussed.

Originele taal-2Engels
Titel2018 IEEE 23rd International Conference on Digital Signal Processing, DSP 2018
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's5
ISBN van elektronische versie9781538668115
DOI's
StatusGepubliceerd - 31 jan. 2019
Evenement23rd IEEE International Conference on Digital Signal Processing, DSP 2018 - Shanghai, China
Duur: 19 nov. 201821 nov. 2018

Congres

Congres23rd IEEE International Conference on Digital Signal Processing, DSP 2018
Land/RegioChina
StadShanghai
Periode19/11/1821/11/18

Vingerafdruk

Duik in de onderzoeksthema's van 'Adaptive EEG channel selection for nonconvulsive seizure analysis'. Samen vormen ze een unieke vingerafdruk.
  • Brainwave

    Huisken, J. A. (Projectmedewerker), Jiao, H. (Project Manager), Singh, K. (Projectmedewerker), Sánchez Martín, V. (Project Manager), de Bruin, E. (Projectmedewerker), van der Hagen, D. (Project communicatie medewerker) & de Mol-Regels, M. (Project communicatie medewerker)

    1/09/1630/11/21

    Project: Onderzoek direct

  • Wearable Brainwave Processing Platform

    Bergmans, J. W. M. (Project Manager), van der Hagen, D. (Project communicatie medewerker), Sánchez Martín, V. (Program Manager), Corporaal, H. (Projectmedewerker), Pineda de Gyvez, J. (Projectmedewerker) & Huisken, J. A. (Projectmedewerker)

    1/09/1630/11/21

    Project: Onderzoek direct

Citeer dit