Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwitdh

A.W. Vaart, van der, J.H. Zanten, van

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

86 Citaten (Scopus)
75 Downloads (Pure)

Samenvatting

We consider nonparametric Bayesian estimation inference using a rescaled smooth Gaussian field as a prior for a multidimensional function. The rescaling is achieved using a Gamma variable and the procedure can be viewed as choosing an inverse Gamma bandwidth. The procedure is studied from a frequentist perspective in three statistical settings involving replicated observations (density estimation, regression and classification). We prove that the resulting posterior distribution shrinks to the distribution that generates the data at a speed which is minimax-optimal up to a logarithmic factor, whatever the regularity level of the data-generating distribution. Thus the hierachical Bayesian procedure, with a fixed prior, is shown to be fully adaptive.
Originele taal-2Engels
Pagina's (van-tot)2655-2675
TijdschriftThe Annals of Statistics
Volume37
Nummer van het tijdschrift5B
DOI's
StatusGepubliceerd - 2009

Vingerafdruk Duik in de onderzoeksthema's van 'Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwitdh'. Samen vormen ze een unieke vingerafdruk.

Citeer dit