1 Downloads (Pure)

Samenvatting

We introduce an adaptive, fully probabilistic pipeline for optimized signal subsampling in sampling-budget constrained systems. Our pipeline equips an agent with a deep generative model of its measurement-generating environment with which it infers posterior distributions over high-dimensional signals. This posterior distribution is subsequently used by the agent to adaptively select next samples that maximize the expected information gain. Experiments on the MNIST and fastMRI data sets show strong adaptability of selected sampling sequences to the signal modality, resulting in high-quality reconstructions for high acceleration factors. Performance is upper-bounded by the representation error of the used generative model, which is mainly evident at low acceleration factors.

Originele taal-2Engels
TitelICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Hoofdstuk10097104
Aantal pagina's5
ISBN van elektronische versie978-1-7281-6327-7
ISBN van geprinte versie978-1-7281-6328-4
DOI's
StatusGepubliceerd - 5 mei 2023
EvenementICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Rhodes Island, Griekenland
Duur: 4 jun. 202310 jun. 2023

Congres

CongresICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Verkorte titelICASSP 2023
Land/RegioGriekenland
StadRhodes Island
Periode4/06/2310/06/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Active Subsampling Using Deep Generative Models by Maximizing Expected Information Gain'. Samen vormen ze een unieke vingerafdruk.

Citeer dit