Active Learning of Decomposable Systems

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

19 Downloads (Pure)

Samenvatting

Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems---with a decomposable set of actions---that make learning in parts possible. The systems are themselves decomposable through non-intersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.
Originele taal-2Engels
Titel2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)
Plaats van productieSeoul, Republic of Korea
UitgeverijACM/IEEE
Pagina's1-10
Aantal pagina's10
ISBN van geprinte versie978-1-4503-7071-4/20/05
StatusGepubliceerd - 13 jul 2020

Vingerafdruk Duik in de onderzoeksthema's van 'Active Learning of Decomposable Systems'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    al Duhaiby, O., & Groote, J. F. (2020). Active Learning of Decomposable Systems. In 2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE) (blz. 1-10). ACM/IEEE.