Accelerating Video Object Detection by Exploiting Prior Object Locations

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
3 Downloads (Pure)

Samenvatting

We provide a set of generic modifications to improve the execution efficiency of single-shot object detectors by exploiting prior object locations in video sequences. We propose a crop-based method to accelerate object detection tasks. It dynamically generates crop regions based on prior information and exploits scene sparsity enabling focused use of computational resources. In contrast to prior work, smaller input resolutions for processing crop regions are used to further reduce computational load. The execution efficiency is increased by avoiding multiple executions of the detector in full resolution. Data augmentations are used to successfully train these lower-resolution networks and maintain their accuracy at the baseline level while reducing inference time. Experiments with two public datasets, UA-DETRAC [13] and UAVDT [2], using the SSD-ML [19] object detection architecture with 128 × 128, 64 × 64 and 32 × 32 input resolutions show that we can achieve a maximum speedup by a factor of 1.7 on the UA-DETRAC dataset, and 1.6 on the UAVDT dataset while delivering the same level of accuracy as the base method. An extensive set of experiments demonstrates the speed-accuracy trade-off and shows that our method can achieve accuracy comparable to state-of-the-art methods at lower execution time.

Originele taal-2Engels
TitelImage Analysis and Processing – ICIAP 2022
Subtitel21st International Conference, Lecce, Italy, May 23–27, 2022, Proceedings, Part II
RedacteurenStan Sclaroff, Cosimo Distante, Marco Leo, Giovanni M. Farinella, Federico Tombari
UitgeverijSpringer
Hoofdstuk55
Pagina's657-668
Aantal pagina's12
ISBN van elektronische versie978-3-031-06430-2
ISBN van geprinte versie978-3-031-06429-6
DOI's
StatusGepubliceerd - 2022
Evenement21st International Conference on Image Analysis and Processing, ICIAP 2022 - Lecce, Italië
Duur: 23 mei 202227 mei 2022
Congresnummer: 21

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
UitgeverijSpringer
Volume13232
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres21st International Conference on Image Analysis and Processing, ICIAP 2022
Verkorte titelICIAP 2022
Land/RegioItalië
StadLecce
Periode23/05/2227/05/22

Financiering

This work is funded by the NWO Perspectief program ZERO.

Vingerafdruk

Duik in de onderzoeksthema's van 'Accelerating Video Object Detection by Exploiting Prior Object Locations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit