Accelerating optimization over the space of probability measures

Shi Chen, Qin Li, Oliver Tse, Stephen J. Wright

Onderzoeksoutput: WerkdocumentPreprintAcademic

70 Downloads (Pure)

Samenvatting

Acceleration of gradient-based optimization methods is an issue of significant practical and theoretical interest, particularly in machine learning applications. Most research has focused on optimization over Euclidean spaces, but given the need to optimize over spaces of probability measures in many machine learning problems, it is of interest to investigate accelerated gradient methods in this context too. To this end, we introduce a Hamiltonian-flow approach that is analogous to moment-based approaches in Euclidean space. We demonstrate that algorithms based on this approach can achieve convergence rates of arbitrarily high order. Numerical examples illustrate our claim.
Originele taal-2Engels
UitgeverarXiv.org
Pagina's1-35
Aantal pagina's35
Volume2310.04006
DOI's
StatusGepubliceerd - 9 okt. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Accelerating optimization over the space of probability measures'. Samen vormen ze een unieke vingerafdruk.

Citeer dit