Samenvatting
We study the algebraic geometry of a family of evaluation codes from plane smooth curves defined over any field. In particular, we provide a cohomological characterization of their dual minimum distance. After having discussed some general results on zero-dimensional subschemes of the plane, we focus on the interesting case of Hermitian s-point codes, describing the geometry of their dual minimum-weight codewords.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 1031-1044 |
Aantal pagina's | 14 |
Tijdschrift | Journal of Pure and Applied Algebra |
Volume | 219 |
Nummer van het tijdschrift | 4 |
DOI's | |
Status | Gepubliceerd - 1 apr. 2015 |