A variational approach based on perturbed eigenvalue analysis for improving spectral properties of isogeometric multipatch discretizations

Thi Hoa Nguyen (Corresponding author), René R. Hiemstra, Stein K.F. Stoter, Dominik Schillinger

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Citaten (Scopus)
11 Downloads (Pure)

Samenvatting

A key advantage of isogeometric discretizations is their accurate and well-behaved eigenfrequencies and eigenmodes. For degree two and higher, however, optical branches of spurious outlier frequencies and modes may appear due to boundaries or reduced continuity at patch interfaces. In this paper, we introduce a variational approach based on perturbed eigenvalue analysis that eliminates outlier frequencies without negatively affecting the accuracy in the remainder of the spectrum and modes. We then propose a pragmatic iterative procedure that estimates the perturbation parameters in such a way that the outlier frequencies are effectively reduced. We demonstrate that our approach allows for a much larger critical time-step size in explicit dynamics calculations. In addition, we show that the critical time-step size obtained with the proposed approach does not depend on the polynomial degree of spline basis functions.

Originele taal-2Engels
Artikelnummer114671
Aantal pagina's27
TijdschriftComputer Methods in Applied Mechanics and Engineering
Volume392
DOI's
StatusGepubliceerd - 15 mrt. 2022

Financiering

The authors gratefully acknowledge financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft) through the DFG Emmy Noether Grant SCH 1249/2-1 and SCH 1249/5-1 .

FinanciersFinanciernummer
Deutsche ForschungsgemeinschaftSCH 1249/5-1, SCH 1249/2-1

    Vingerafdruk

    Duik in de onderzoeksthema's van 'A variational approach based on perturbed eigenvalue analysis for improving spectral properties of isogeometric multipatch discretizations'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit